What does HackerNews think of doctr?
docTR (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.
- https://github.com/mindee/doctr
- https://github.com/open-mmlab/mmocr
- https://github.com/PaddlePaddle/PaddleOCR (honestly I don't know Mandarin so I'm a bit stuck)
- https://github.com/clovaai/donut -- While it's primarily an "OCR-free document understanding transformer," I think it's worth experimenting with. Think I can sort this out by letting the LLM reason through it multiple times (although this will impact performance)
- yesterday got a suggestion to consider https://github.com/kakaobrain/pororo -- don't think development is still active but the results are pretty great on Korean text
It's command line driven but can display the detected text as an overlay of the document.
OCR processing typically consist of two major steps: detecting/locating words or lines of text on the page, and recognizing lines of text.
Tesseract's text recognition uses modern methods, but the text detection phase is still based on classical methods involving a lot of heuristics, and you may need to experiment with various configuration variables to get the best results. As a result it can fail to detect text if you present it with something other than a reasonably clean document image.
Doctr (https://github.com/mindee/doctr) is a new package that uses modern methods for both text detection and recognition. It is pretty new however and I expect will take more time and effort to mature.
It also has TensorFlow.js version to run in-browser: https://blog.tensorflow.org/2022/06/ocr-in-browser-using-ten...