What does HackerNews think of Enzyme?

High-performance automatic differentiation of LLVM and MLIR.

Language: LLVM

#61 in C
#40 in Compiler
#30 in C++
#33 in Deep learning
#113 in Rust
#15 in Tensorflow
lattner left google and was the primary reason they chose swift, so they lost interest.

if you're asking from an ML perspective, i believe the original motivation was to incorporate automatic differentiation in the swift compiler. enzyme would be the spiritual successor to that.

https://github.com/EnzymeAD/Enzyme

Can you point to a concrete example of one that someone would run into when using the differential equation solvers with the default and recommended Enzyme AD for vector-Jacobian products? I'd be happy to look into it, but there do not currently seem to be any correctness issues in the Enzyme issue tracker that are current (3 issues are open but they all seem to be fixed, other than https://github.com/EnzymeAD/Enzyme.jl/issues/278 which is actually an activity analysis bug in LLVM). So please be more specific. The issue with Enzyme right now seems to moreso be about finding functional forms that compile, and it throws compile-time errors in the event that it cannot fully analyze the program and if it has too much dynamic behavior (example: https://github.com/EnzymeAD/Enzyme.jl/issues/368).

Additional note, we recently did a overhaul of SciMLSensitivity (https://sensitivity.sciml.ai/dev/, as part of the new https://docs.sciml.ai/dev/) and setup a system which amounts to 15 hours of direct unit tests doing a combinatoric check of arguments with 4 hours of downstream testing (https://github.com/SciML/SciMLSensitivity.jl/actions/runs/25...). What that identified is that any remaining issues that can arise are due to the implicit parameters mechanism in Zygote (Zygote.params). To counteract this upstream issue, we (a) try to default to never default to Zygote VJPs whenever we can avoid it (hence defaulting to Enzyme and ReverseDiff first as previously mentioned), and (b) put in a mechanism for early error throwing if Zygote hits any not implemented derivative case with an explicit error message (https://github.com/SciML/SciMLSensitivity.jl/blob/v7.0.1/src...). We have alerted the devs of the machine learning libraries, and from this there has been a lot of movement. In particular, a globals-free machine learning library, Lux.jl, was created with fully explicit parameters https://lux.csail.mit.edu/dev/, and thus by design it cannot have this issue. In addition, the Flux.jl library itself is looking to do a redesign that eliminates implicit parameters (https://github.com/FluxML/Flux.jl/issues/1986). Which design will be the one in the end, that's uncertain right now, but it's clear that no matter what the future designs of the deep learning libraries will fully cut out that part of Zygote.jl. And additionally, the other AD libraries (Enzyme and Diffractor for example) do not have this "feature", so it's an issue that can only arise from a specific (not recommended) way of using Zygote (which now throws explicit error messages early and often if used anywhere near SciML because I don't tolerate it). tl;dr: don't use Zygote.params, the ML AD devs know this its usage is being removed ASAP.

So from this, SciML should be rather safe and if not, please share some details and I'd be happy to dig in.

Enzyme dev here, so take everything I say as being a bit biased:

While, by design Enzyme is able to run very fast by operating within the compiler (see https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b... for details) -- it aggressively prioritizes correctness. Of course that doesn't mean that there aren't bugs (we're only human and its a large codebase [https://github.com/EnzymeAD/Enzyme], especially if you're trying out newly-added features).

Notably, this is where the current rough edges for Julia users are -- Enzyme will throw an error saying it couldn't prove correctness, rather than running (there is a flag for "making a best guess, but that's off by default"). The exception to this is garbage collection, for which you can either run a static analysis, or stick to the "officially supported" subset of Julia that Enzyme specifies.

Incidentally, this is also where being a cross-language tool is really nice -- namely we can see edge cases/bug reports from any LLVM-based language (C/C++, Fortran, Swift, Rust, Python, Julia, etc). So far the biggest code we've handled (and verified correctness for) was O(1million) lines of LLVM from some C++ template hell.

I will also add that while I absolutely love (and will do everything I can to support) Enzyme being used throughout arbitrary Julia code: in addition to exposing a nice user-facing interface for custom rules in the Enzyme Julia bindings like Chris mentioned, some Julia-specific features (such as full garbage collection support) also need handling in Enzyme.jl, before Enzyme can be considered an "all Julia AD" framework. We are of course working on all of these things (and the more the merrier), but there's only a finite amount of time in the day. [^]

[^] Incidentally, this is in contrast to say C++/Fortran/Swift/etc, where Enzyme has much closer to whole-language coverage than Julia -- this isn't anything against GC/Julia/etc, but we just have things on our todo list.

[ps sorry if this ended up as a dup, I meant to reply deeper in the tree, so I deleted the older comment and moved it here].